
JSXM Manual

Dimitris Dranidis

Computer Science Department

CITY College

An International Faculty of the

University of She�eld

Version: v1.2

Last update: 20 May 2010

Contents

1 Introduction to JSXM 4

1.1 What is JSXM? . 4
1.1.1 Model Animation . 4
1.1.2 Test Generation . 4
1.1.3 Test Transformation . 4

2 First steps 4

2.1 Installing JSXM . 4
2.2 Checking the installation . 5
2.3 Executing the examples . 5
2.4 Filename conventions . 5

3 Compiling the speci�cation 5

3.1 Notes about the compilation . 5

4 Animating the SXM speci�cation 6

4.1 Executing the animator in batch mode . 6
4.2 Executing the animator in interactive mode . 6

4.2.1 Using the animator in interactive mode . 6

5 Generating Test Cases 6

5.1 Generated test cases . 7

6 Transforming Test Cases to JUnit 8

6.1 Requirements for Java �les under test . 8
6.1.1 Example of a generated JUnit �le . 9

6.2 Executing the JUnit tests . 10

7 JSXM speci�cation 10

7.1 JSXM types: XSD . 12
7.1.1 User-de�ned types . 12

7.2 Function de�nitions . 12
7.3 Test Input generators . 13

7.3.1 The test generation process . 14
7.4 Speci�cations for interacting SXMs . 15

7.4.1 Preconditions should have no side-e�ects . 16
7.4.2 SXM instances de�nitions . 17

8 De�ning new JSXM types with XSD 18

A Appendix 21

A.1 The complete book speci�cation: . 21
A.2 Animation example: . 22
A.3 The complete Cart speci�cation: . 23

B Developer's reference guide 25

B.1 nameSXM . 25
B.2 nameSXM_base . 25

2

Major changes from version 1.1

1. Support for XSD types:

(a) Standard XSD types supported (e.g. xs:int, xs:string, etc.) for de�ning the types of the input
and output arguments.

(b) User de�ned types are de�ned using XML schema de�nition (XSD) �les. User de�ned XSD
types are transformed to Java types using JAXB binding.

2. The XML syntax for specifying the inputs and outputs has been changed and is now compatible to
XSD typing.

3. Ant task provided for test execution: runjunit

3

1 Introduction to JSXM

1.1 What is JSXM?

JSXM is a model-based testing tool. The tool is implemented in Java and allows the automated generation
of test cases based on a model of the software to be tested. The model is expressed as a Stream X-machine
(SXM). With the help of JSXM the speci�ed model can be used for:

� Model Animation

� Test Generation

� Test Transformation

1.1.1 Model Animation

Animation of the model means execution of the model or simulation of the modeled software. Interactive
or batch animation allow the model designer to validate the speci�cation, i.e. ensure that the correct
functionality is modeled.

1.1.2 Test Generation

Once a model is created, the model can be used for the automated generation of test cases. The generated
test cases are in XML format and they are independent of the technology or programming language of
the implementation. This means that the implementation under test can be an application in any
programming language or implementation platform (for instance the application could be a Web service).

The test generation algorithm is based on the testing theory of Stream X-machines. More details
about the SXM testing theory can be found in [2, 1].

1.1.3 Test Transformation

Since the generated test cases are independent of the underlying technology of the implementation under
test, the tests cannot be directly used for testing. A Test Transformer is responsible for transforming
the general test cases to concrete test cases. It is clear that di�erent Test Transformers are required for
di�erent programming languages or di�erent software technologies.

Currently, a Java Test Transformer is available which generates JUnit test cases for the automated
testing of Java applications.

2 First steps

2.1 Installing JSXM

1. Install Ant. Ant automates the processes of compilation, test generation and test transformation
with the provided build �les. You can download and install Ant from http://ant.apache.org/

2. Extract the zipped �le in a folder. Let us assume that this folder is C:\JSXM. (Make sure that the
directory you install has no spaces in its name).

3. Check the contents:

(a) lib\jdom.jar

(b) lib\junit.jar

(c) lib\jaxb-impl.jar

(d) lib\jaxb-xjc.jar

(e) lib\jsxm.jar

(f) build.xml (ANT build �le)

4. Set the environment variable JSXM to point to the installation folder.

In Windows shell you can execute:
set JSXM=C:\JSXM

In UNIX shell you can execute (assuming JSXM is located at /home/user/):
export JSXM=/home/user/JSXM

4

http://ant.apache.org/

2.2 Checking the installation

Change to the Book_Borrower directory in the examples and either run (with ANT):
ant -Dname=Book

or
java core.SXMBaseGenerator -path temp\ -overwrite Book.xml

javac -d temp temp*.java

2.3 Executing the examples

In the following sections all the components of JSXM are introduced with the help of the existing examples.
We suggest to try out the examples before proceeding with writing your own speci�cations (Section 6.3.1).

2.4 Filename conventions

Assuming specName is the name of the speci�cation model, the following conventions are used for naming
�les:

� The speci�cation of the model should be stored in a �le: specName.xml

� The name attribute of the SXM element in specName.xml should be specName

� The generated Java �les have the name specNameSXM (actually types. specNameSXM)

� The test generation searches for the �le specName_sets.xml and generates a �le called spec-

Name_test.xml

Although not necessary, it is advised to name input and output �les for batch animation with the name
of the speci�cation and the su�x inputs/outputs respectively.

Other �les:

De�nitions of prototype SXM instances are stored in a �le called de�nitions.xml.

3 Compiling the speci�cation

Required �les:

� The speci�cation in an XML �le: specName.xml

� A folder named temp (this is created for you if you use ant)

� An ant build.xml �le (if you use ant).

Generated �les:

� Java �les are generated and compiled to class �les in the temp folder

It is assumed that the build.xml is located in the current folder (you can copy build.xml from
the root JSXM folder). The following command generates and compiles all necessary Java �les. Java
�les and the corresponding class �les are kept in the folder temp:

ant �Dname=specName

Example:
ant �Dname=Book

3.1 Notes about the compilation

The temp folder stores all the necessary Java source and class �les for animating the speci�cations and
generating the tests. These �les should not be manually edited. If the compilation of �les reveals errors
you should edit the SXM speci�cation and not the generated Java �les.

5

4 Animating the SXM speci�cation

The animator can be executed in two modes:

� Batch mode

� Interactive mode

Note that you can directly invoke the animator and compilation will also take place.

4.1 Executing the animator in batch mode

Required �les:

� The inputs to the SXM: input�le.xml

Generated �les:

� The outputs of the SXM: output�le.xml

ant banimate �Dname=specName

Example:
ant banimate �Dname=Book

The default input/output �les for batch animation are: specName_input.xml and specName_output.xml.
These �les can be set by using the i�le and o�le properties of the build �le:

ant banimate �Dname=Book �Difile=input.xml �Dofile=output.xml

4.2 Executing the animator in interactive mode

ant animate �Dname=specName

Example:
ant animate �Dname=Book

4.2.1 Using the animator in interactive mode

The animator creates the machine to be animated, resets the machine to the initial state and initial
memory, and then waits for some input to be entered at the input prompt:

Input :

Instead of an input, a command can be entered at the input prompt. Entering .h. displays the
available commands:

Input : .h.

**

.r. resets the SXM to its initial state and memory.

.i. lists available inputs.

.q. quits the animator.

.h. displays this list.

**

An example of an interactive animation can be found in the Appendix.
Note that there is a line return after the �Input� prompt but this does not e�ect the

animation.

5 Generating Test Cases

Required �les:

� The speci�cation in an XML �le: specName.xml

� A �le de�ning sets: the characterization set and the state cover set in the �le: specName_sets.xml

� A �le containing prototype de�nitions in the case of Sxm inputs: de�nitions.xml

� The ANT build.xml

6

Generated �les:

� The test �le: specName_test.xml

� A log �le: out

The following command generates test cases after generating and compiling all necessary Java �les.
Java �les and the corresponding class �les are kept in the folder temp. Note that it is not necessary to
compile the speci�cation �rst:

ant �Dname=specName tests

Example:
ant -Dname=Book tests

The test generation creates (overwrites) the specName_test.xml �le. The output of the execution
and any errors are stored in the out text �le.

Note that the default k value is 2. A di�erent k value can be set by executing:
ant �Dname=specName �Dk=3 tests

Example:

ant �Dname=Book �Dk=3 tests

5.1 Generated test cases

The following is an extract of the �le with the generated test cases:

<?xml version="1.0" encoding="UTF−8"?>
<set k="3">
<de�nitions />
<sequences>
<sequence name="releasePF">
<call>
<function name="releasePF" />
<input name="release" />
<output name="release_Error" />

</call>
</sequence>
<sequence name="bookIsNotAvailablePF">
<call>
<function name="bookIsNotAvailablePF" />
<input name="isAvailable" />
<output name="isAvailableOut">
<result type="xs:boolean">true</result>

</output>
</call>

</sequence>
<sequence name="setBorrowedPF_bookIsAvailablePF">
<call>
<function name="setBorrowedPF" />
<input name="setBorrowed" />
<output name="setBorrowedOut" />

</call>
<call>
<function name="bookIsAvailablePF" />
<input name="isAvailable" />
<output name="isAvailableOut">
<result type="xs:boolean">false</result>

</output>
</call>

</sequence>
...
</sequences>

</set>

7

The top element set has as an attribute the number k used for the test generation. The set consists or
de�nitions used in the test generation and a list of sequences of inputs-outputs. Each sequence consists
of one or more calls. The name of the sequence lists the sequence of the processing functions which must
be triggered. Each call has the following structure:

� The function is the processing function which must be triggered.

� The input is the necessary input to trigger the function. The input may be complex and can contain
one or more arguments.

� The output is the produced output by the SXM oracle, i.e. the expected output. The output may
be complex and can contain one or more results.

� Each argument or result is characterized by its type, its name, and its value.

The de�nitions de�ne prototypes which are necessary when the test cases involve arguments of type
Sxm. More details about SXM de�nitions may be found in Section 7.4.2

6 Transforming Test Cases to JUnit

The test cases generated by the JSXM test generation are abstract, i.e. language-independent; they are
not speci�c to any implementation language. These abstract test cases can be used to generate concrete
test cases which can be executed to test a system under test in a speci�c language. A transformation
process is necessary to transform the abstract test cases to concrete test cases.

A JUnit transformer is implemented which transforms the abstract test cases to JUnit test cases in
order to test Java programs. Let us assume that the Java class under test has the same name as the
speci�cation: specName.java.

Required �les:

� The abstract test cases xml �le: specName_test.xml

Generated �les:

� The JUnit test �le: specNameAdapterTest.java

The generated JUnit java class intends to test a Java adapter class: specNameAdapter.java. The
purpose of the adapter is to wrap all method calls of the class under test and to make them return
outputs compatible to the outputs of the speci�cation.

The following command generates JUnit test cases after generating and compiling all necessary Java
�les and generating the abstract test cases. The generated JUnit �le is stored in the junit folder:

ant junit �Dname=specName

Example:
ant junit -Dname=Book

The generated JUnit test class is called BookAdapterTest.java.

6.1 Requirements for Java �les under test

� There must exist a default constructor. The JUnit test creates objects using the default constructor.

� All paths of all methods should either return a value or throw an exception. Di�erent failure paths
should throw di�erent exceptions (observability).

As an example we present a possible implementation of the Book Java class:

public class Book{

private boolean available = true;

public boolean isAvailable() {
return available;

}

8

public void setBorrowed() {
if (available) {
available = false;

}
else

throw new RuntimeException();
}

public void release() {
if (! available) {
available = true;

}
else

throw new RuntimeException();
}

}

6.1.1 Example of a generated JUnit �le

In the following Java code one can see two of the generated test methods. The name of the method consists
of the k value, the number of the test and the function(s) called. Each assertion compares the actual
output of the adapter with the expected output generated by the animation of the speci�cation. Note that
complex outputs, such as isAvalaibleOut(true), have been serialized to strings as isAvailableOut_true.

import junit.framework.TestCase;

public class BookAdapterTest extends TestCase {

public void test_k3_1_releasePF() {
BookAdapter obj = new BookAdapter();
assertEquals("release_Error", obj.release());

}

public void test_k3_2_bookIsNotAvailablePF() {
BookAdapter obj = new BookAdapter();
assertEquals("isAvailableOut_true", obj.isAvailable());

}

public void test_k3_3_setBorrowedPF_bookIsAvailablePF() {
BookAdapter obj = new BookAdapter();
assertEquals("setBorrowedOut", obj.setBorrowed());
assertEquals("isAvailableOut_false", obj.isAvailable());

}
...
//
// Helper methods for de�nitions...
//

}
// End of generated Test Case

The adapter should convert all results of successful method execution or any exceptions thrown to
serialized string outputs. In the following we present an example of the adapter for the Book Java class.
Note how the boolean result of the isAvailable method is serialized to a string containing the method
call and the result. Also note how the exception is converted to the string containing an error as in the
speci�cation.

public class BookAdapter {

9

private Book book = new Book();

public String isAvailable() {
return "isAvailableOut_"+ book.isAvailable();

}

public String setBorrowed() {
try {
book.setBorrowed();

} catch (Exception e) {
return "setBorrowed_Error";

}
return "setBorrowedOut";

}

public String release() {
try {
book.release();

} catch (Exception e) {
return "release_Error";

}
return "releaseOut";

}
}

6.2 Executing the JUnit tests

Assuming you have placed the Java under test class and its adapter in the java folder, compile them:
javac java*.java

Required �les:

� The ANT build.xml

� The generated JUnit java �le.

The following command executes the JUnit tests generated by the previous step. Note that there is no
dependency to test generation, which means that the test cases need to be generated with the junit ANT
task beforehand.

ant runjunit �Dname=specName

Example:
ant runjunit -Dname=Book

..................................

Time: 0

OK (34 tests)

7 JSXM speci�cation

The SXM peci�cations for JSXM are written in XML with some inline Java code in some elements. In
the following DTD fragments are used for the presentation of the XML syntax of the speci�cation.

The SXM element is the top element. The attribute name is the name of the speci�cation. All other
elements are children of the SXM element:

<!ELEMENT SXM (states, initialState, transitions, memory, inputs, outputs, functions,

definitions?, testinputgeneration?) >

<!ATTLIST SXM name NMTOKEN #REQUIRED >

The initialState element de�nes the initial state. The initial state must be one of the states de�ned
in the states element.

<!ELEMENT initialState EMPTY >

<!ATTLIST initialState state IDREF #REQUIRED >

10

The states element has as children all the state elements. Each state has an attribute name.
<!ELEMENT states (state+) >

<!ELEMENT state EMPTY >

<!ATTLIST state name ID #REQUIRED >

Each transition is defined starting at a state (from) and going to a state (to) and

is triggered by a function (function). The to and from attributes each refer to a state.

The function attribute refers to a function.

<!ELEMENT transitions (transition+) >

<!ELEMENT transition EMPTY >

<!ATTLIST transition from IDREF #REQUIRED >

<!ATTLIST transition function IDREF #REQUIRED >

<!ATTLIST transition to IDREF #REQUIRED >

The memory element has four children:

� The javaImports element contains Java code which de�nes all necessary import statements.

� The declaration element contains Java code which de�nes all necessary memory variables.

� The initial element contains Java code which initializes all variables declared in the memory element.

� The display element contains a Java expression used by the animator to display the memory con-
tents. The Java expression in the display element should evaluate to a string.

<!ELEMENT memory (javaImports, declaration, initial, display) >

<!ELEMENT javaImports (#CDATA)>

<!ELEMENT declaration (#CDATA)>

<!ELEMENT display (# CDATA)>

<!ELEMENT initial (# CDATA)>

The inputs element has as children all the input elements. Each input element de�nes a SXM input.
An input has a name and may have zero or more arguments (arg) elements. An argument of an input is
speci�ed by two attributes: its name and its type. Note that these types are not Java types but JSXM
types. Refer to Section 7.1 for the available JSXM types.

<!ELEMENT inputs (input+) >

<!ELEMENT input (arg*) >

<!ATTLIST input name ID #REQUIRED >

<!ELEMENT arg EMPTY >

<!ATTLIST arg name NMTOKEN #REQUIRED >

<!ATTLIST arg type NMTOKEN #REQUIRED >

Outputs are structured similarly to inputs. Each output has a name and my have zero or more results.
Each result (similarly to arguments) has a name and a (JSXM) type.

<!ELEMENT outputs (output+) >

<!ELEMENT output (result*) >

<!ATTLIST output name ID #REQUIRED >

<!ELEMENT result EMPTY >

<!ATTLIST result name NMTOKEN #REQUIRED >

<!ATTLIST result type NMTOKEN #REQUIRED >

The functions element consists of the function declarations. A function has three attributes: its
name, the input it is triggered by and the output it produces. A function may have a precondition and
an e�ect :

� A processing function may have a precondition. The precondition contains a Java boolean expression
over memory variables and input arguments. The function is triggered only if the Java expression
evaluates to true.

� A processing function may have an e�ect. The e�ect contains Java statements over memory vari-
ables, input arguments and output results. The Java statements in the e�ect are executed when
the precondition evaluates to true.

11

<!ELEMENT functions (function+) >

<!ELEMENT function (effect? , precondition?) >

<!ATTLIST function name ID #REQUIRED >

<!ATTLIST function input IDREF #REQUIRED >

<!ATTLIST function output IDREF #REQUIRED >

<!ELEMENT effect (#CDDATA) >

<!ELEMENT precondition (#CDDATA) >

Refer to Section 7.2 for more details about function declarations.
The de�nitions element is optional. It is only necessary if an input has an argument of type Sxm.

Each defsxm element de�nes a SXM by providing a name, the type of the SXM and optionally the inputs
provided to the machine in order to drive the machine to a speci�c state and memory. The de�nitions
are used both for animation and test generation. Refer to Section 7.4.2 for more details about SXM
de�nitions.

<!ELEMENT definitions (defsxm+) >

<!ELEMENT defsxm (input*) >

<!ATTLIST defsxm name NMTOKEN #REQUIRED >

<!ATTLIST defsxm type NMTOKEN #REQUIRED >

Finally the testinputgeneration element is optional and it is used for the generation of tests. The
element has as children a di�erent inputgenerator for each function in the speci�cation that receives
complex inputs (inputs with argument values). The inputgenerator contains Java code which is executed
for setting the arguments of inputs. Refer to Section 7.3 for more details about input generators.

<!ELEMENT testinputgeneration (inputgenerator+) >

<!ELEMENT inputgenerator (#CDDATA) >

<!ATTLIST inputgenerator function IDREF #REQUIRED >

7.1 JSXM types: XSD

JSXM currently supports the following XSD basic types:

� xs:int: integer type. The corresponding Java type is Integer.

� xs:boolean: boolean type. The corresponding Java type is Boolean.

� xs:string: string type. The corresponding Java type is String.

� xs:decimal: decimal type. The corresponding Java type is BigDecimal.

Special types:

� sxm: A Stream X-machine type. Values for the arguments of type Sxm are any SXM model
instances de�ned in the de�nitions element of a speci�cation or an external de�nitions.xml �le.

7.1.1 User-de�ned types

New types can be de�ned by providing their XSD de�nitions. More details can be found in Section 8.

7.2 Function de�nitions

The following extract of a speci�cation illustrates the basic concepts of a JSXM processing function
de�nition.

<transitions>
<transition from="normal" function="withdraw0" to="opened" />

...
</transitions>

<memory>
<declaration>
int balance

</declaration>
<initial>
balance = 0

12

</initial>
</memory>

<inputs>
...
<input name="withdraw"><arg name="amount" type="xs:int" /></input>

</inputs>
<outputs>
...
<output name="withdrawOut"><result name="amount" type="xs:int" /></output>

</outputs>

<functions>
...
<function name="withdraw0" input="withdraw" output="withdrawOut">
<precondition>
withdraw.get_amount() > 0 && balance == withdraw.get_amount()

</precondition>
<e�ect>
balance = balance − withdraw.get_amount();
withdrawOut.amount = withdraw.get_amount();

</e�ect>
</function>

<function name="readbalance" input="getBalance" output="getBalanceOut">
<e�ect>
getBalanceOut.amount = balance;

</e�ect>
</function>

</functions>

The memory of the SXM consists of a single integer variable called balance which is initialized to zero.
The processing function withdraw0 labels a transition from the state normal to the state opened.
The function may be triggered by a withdraw input and produces a withdrawOut output. Note that

both input and output are complex (i.e. have arguments or results).
The function is triggered when the precondition evaluates to true: when the amount to be withdrawn

is positive and equal to the balance. Thus the processing function represents the situation in which all
the money are withdrawn from the account (withdraw0). Note that the syntax:

inputName.get_argName()
is used to access the argument of an input as in the example:

withdraw.get_amount()
Furthermore notice how the Java boolean �and� operator is expressed as: �&&� instead of

the usual �&&�, since the character �&� is not directly allowed in XML documents.
If the precondition is true the e�ect is executed: The balance is decreased by the amount withdrawn

and the output of the processing function is set to the withdrawn amount. Note that for setting a result
of an output the syntax is simpler:

outputName.resultName

as in the example:

withdrawOut.amount
Arguments of inputs are treated di�erently since their values should not be modi�ed. For each

argument an accessor get The Boat That Rocked
method is de�ned and must be used in order to access the value. Output results, on the other hand,

are directly accessible �elds and are usually modi�ed in the e�ect part of a processing function.

7.3 Test Input generators

Input generators are used during the test generation process. Each function which receives a complex
input (having one or more arguments) needs an input generator.

13

<testinputgeneration>
<inputgenerator function="deposit">
deposit.set_amount(5);

</inputgenerator>
<inputgenerator function="withdrawN">
if (balance != 1) withdraw.set_amount(1);

</inputgenerator>
<inputgenerator function="withdraw0">
withdraw.set_amount(balance);

</inputgenerator>
</testinputgeneration>

The Java fragment inside the inputgenerator element is executed whenever a value is needed to be set
for the arguments of the input. As the example of withdrawN and withdraw0 illustrate the values usually
depend on the current memory. In the case of withdraw0 the amount (1st argument) of the withdraw
input needs to be set equal to the balance.

Two ways are supported for setting the inputs:
The syntax used in the example uses setter methods which are provided, such as the set_amount

method:
withdraw.set_amount(balance);

The alternative syntax:
setArg(argNum, valueAsAString)

is used for setting the (argNum+1)th argument of the input to the value corresponding to the val-

ueAsAString expression. The conversion of valueAsAString to a value is performed by the parseType

method of the corresponding JSXM type (see Section 7.1.1 for more details). The previous example is as
follows:

setArg(0, ""+balance);

7.3.1 The test generation process

The test generation process consists of two phases:

� In the �rst phase a set of processing function sequences is generated. The execution of these
sequences and the comparison of the expected outputs to the actual outputs guarantees the equiv-
alence of the speci�cation to the implementation.

� In the second phase for each sequence of processing functions a sequence of inputs should determined
which will force the execution of every functions in the sequence.

For each pre�x of the function sequence there might be more than one input sequence which may be
used. Thus, in the general case, one needs to select a speci�c input pre�x and then incrementally extend
this until a complete input sequence which triggers the complete function sequence is found. In some
cases, when it is not possible to extend the input sequence, previous pre�x sequence choices need to be
rejected and other pre�xes need to be selected (backtracking). This makes the input generation process an
expensive and time-consuming process. Uniform speci�cations allow an easier and faster input sequence
selection algorithm.

In the case of uniform speci�cations [3] any input pre�x may be chosen in order to incrementally
build the whole input sequence. Essentially this reduces to the process of selecting the inputs for the next
processing function without caring about what follows (any input which triggers the current function will
do). This is how the input generators in JSXM work. The selection of the input is based only on the
knowledge of the current memory.

The Account is an example of a non-uniform speci�cation. The knowledge of the current memory is
not enough for deciding the input value. To demonstrate that assume we have to generate inputs for the
following function sequence:

<open, deposit, withdrawN, withdrawN, withdrawN, withdrawN, withdrawN>
The current input generator will generate the following input sequence

<open, deposit(5), withdraw(1), withdraw(1), withdraw(1), withdraw(1)>
and it will fail to generate an input for the last withdrawN since the withdrawal of 1 will fail in the

precondition of withdrawN; actually the last withdraw(1) input will trigger the withdraw0 processing

14

function instead of the intended withdrawN. The problem is worse if we choose a smaller value for the
�rst deposit argument. We manage to avoid this problem with values for k as large as 3 since the longest
generated sequences of withdrawNs after a deposit are:

<open,deposit,withdrawN,withdrawN,withdrawN,withdrawN,open>
<open,deposit,withdrawN,withdrawN,withdrawN,withdrawN,close>
<open,deposit,withdrawN,withdrawN,withdrawN,withdrawN,deposit>

The pre�x <open,deposit> is member of the state cover and reaches the state normal, the sequence
of the next four withdrawNs is the result of an exploration in depth k+1 of the functions, and the su�xes
<open>, <close> and <deposit> are the members of the characterization set. A higher k would require
a di�erent input generator for deposit, as for example: deposit(6).

7.4 Speci�cations for interacting SXMs

A special type of argument is Sxm whose value is a SXM instance. A processing function receiving input
with a Sxm argument may send inputs to another SXM. That way the interaction between two machines
is achieved. The interaction resembles the object-oriented model of method invocation: an object may
send a message to another object if it knows its identity. The message as usually is a complex input with
arguments. The returned value can be accessed by accessing the output message ot the machine.

In the following example we present the memory, a processing function and its corresponding in-
put from a Borrower speci�cation. The borrower may borrow a book if a book is available. A Book
speci�cation speci�es the behavior of a book (borrowing, returning, checking availability).

<memory>
<declaration>
BookSXM book;

</declaration>
<initial>
book = null;

</initial>
</memory>

<inputs>
<input name="borrowBook" >
<arg name="book" type="sxm"/>

</input>
...
</inputs>

<functions>
<function name="borrowBookPF" input="borrowBook" output="borrowBookOut">
<precondition>
<!−−
borrowBook.book is an Sxm.
Send the input isAvailable() to the Sxm.
From the response get the value of the part named "result".

−−>
((BookSXM) (borrowBook.get_book())).isAvailable().result;

</precondition>
<e�ect>
book = (BookSXM) borrowBook.get_book();
book.setBorrowed();

</e�ect>
</function>

</functions>

Note that the argument to the borrowBook input is of type Sxm, a reference to a SXM instance.
The precondition of the borrowBookPF is:

<precondition>
((BookSXM) (borrowBook.get_book())).isAvailable().result;

</precondition>

15

Recall that borrowBook.get_book() returns the argument book of the borrowBook input. This argument
is a SXM instance of type Sxm (corresponding to a Java SXM abstract class). We need to downcast the
general SXM type to the speci�c SXM type of the receiver: BookSXM. Then, the input isAvailable() is
sent to the BookSXM machine and the output is read by accessing the result property. So, in a way, the
function asks the book whether it is available. The result in this case is a boolean value as it is shown in
the de�nition of the isAvailableOut output in the Book speci�cation:

<output name="isAvailableOut">
<result name="result" type="xs:boolean" />

</output>

The e�ect of the borrowBookPF is:

<e�ect>
book = (BookSXM) borrowBook.get_book();
book.setBorrowed();

</e�ect>

The memory variable is set to the book argument of the borrowBook input. Both are of type Book-
SXM. Then the input setBorrowed() is sent to the book SXM so that the book changes its state to
borrowed.

7.4.1 Preconditions should have no side-e�ects

Another processing function of the same speci�cation describes the situation in which the book to be
borrowed is not available:

<function name="borrowBookNotAvailablePF" input="borrowBook" output="borrowBook_NotAvailable">
<precondition>
!((BookSXM) (borrowBook.get_book())).isAvailable().result;

</precondition>
<e�ect>
</e�ect>

</function>

Note that the precondition is the negation of the precondition of the borrowBookPF processing func-
tion. So when this precondition is also evaluated an input isAvailable() is sent to the book SXM.

When an input is sent to a SXM the preconditions of all processing functions are evaluated in order
to determine which of the processing function will be triggered. This means that when the borrower
SXM receives the borrowBook input the evaluation of both the processing function will have as a result
that transmission of two isAvailable() inputs to the same book SXM. This is potentially a problem if the
isAvailable() input causes the book SXM to change its state or its memory. In that case the results of
the input will be di�erent.

So preconditions should have no side-e�ects: inputs sent to other SXMs as part of the precondition
statements should not modify the state or the memory of the receiver SXM.

This is not a problem if the system to be tested is designed properly, i.e. each function is either a
mutator or an accessor, and there are no functions which are both.

� Amutator is a function that can modify a system's state. A mutator may perform some computation
and modify the values of system variables. Mutators should not return a value.

� An accessor is a function that accesses the contents of a system but does not modify the system. An
accessor returns a value of a system variable or the result of a computation using system variables.
An accessor should not modify any of the system variables, i.e should not change the state of the
system.

In the book example the function isAvailable corresponding to the input isAvailable should be an accessor.

16

7.4.2 SXM instances de�nitions

In order to animate the Borrower SXM we need to provide an argument of type Sxm when sending the
borrowBook input. The same need occurs when we wish to generate inputs for test generation.

New instances of SXMs can be created by cloning prototype instances of SXMs. The de�nitions of
these prototypes are found either inside the speci�cation �le or in an external �le: de�nitions.xml

The Borrower speci�cation includes the following de�nitions of prototypes:

<de�nitions>
<defsxm name="availableBook" type="BookSXM">
</defsxm>

<defsxm name="borrowedBook" type="BookSXM">
<input name="setBorrowed"/>

</defsxm>
</de�nitions>

The availableBook prototype instance is a SXM found in the initial state and memory.
The borrowedBook prototype instance is a SXM which has received the setBorrowed() input so it is

found in the borrowed state.
One can de�ne SXMs at any state and memory reachable by sequence of inputs using the defsxm

element with attributes the name of the prototype instance and its speci�c type and children the inputs
which need to be provided to the machine. If no inputs are provided then the instance is found in the
initial state and memory.

One can create new unnamed instances of SXMs by using the syntax:
newsxm:prototypeName

For example one can provide the following input to the animation of the Borrower speci�cation:
borrowBook (newsxm:borrowedBook)

This will create a new clone of the borrowedBook prototype instance as a value of the argument of
borrowBook input.

When test cases are generated, the de�nitions are included in the test �le as in the following example:

<?xml version="1.0" encoding="UTF−8"?>
<set k="2">
<de�nitions>
<defsxm name="borrowedBook" sxm="BookSXM">
<input name="setBorrowed" />

</defsxm>
<defsxm name="availableBook" sxm="BookSXM" />

</de�nitions>
<sequences>

...
<sequence name="borrowBookNotAvailablePF_returnBookPF">
<call>
<function name="borrowBookNotAvailablePF" />
<input name="borrowBook">
<book type="sxm">newsxm:borrowedBook</book>

</input>
<output name="borrowBook_NotAvailable" />

</call>
<call>
<function name="returnBookPF" />
<input name="returnBook" />
<output name="returnBook_Error" />

</call>
</sequence>

</set>

De�nitions are always included in the test �le since this �le should be totally self-containing.
Note that the test generation will fail if there are inputs of type sxm and there is no de�nitions.xml

�le or the �le does not contain the de�nition for the speci�c value.

17

8 De�ning new JSXM types with XSD

New types can be de�ned by providing their XSD de�nitions. For each user-de�ned a type a corresponding
.xsd �le must exist in the same directory as the speci�cation. The following speci�cation of inputs and
output uses two user-de�ned types: CartType and OrderDetailsType:

<inputs>
<input name="addToCart">
<arg name="prodId" type="xs:string" />
<arg name="quantity" type="xs:int" />

</input>
<input name="removeFromCart">
<arg name="prodId" type="xs:string" />

</input>
<input name="getCart" />
<input name="setCart" >
<arg name="cart" type="CartType" />

</input>
<input name="checkOut" >
<arg name="orderDetails" type="OrderDetailsType" />

</input>
</inputs>

<outputs>
<output name="addToCartOut" />
<output name="removeFromCartOut" />
<output name="getCartOut">
<result name="cart" type="CartType" />

</output>
<output name="setCartOut" />
<output name="checkOutOut" >
<result name="orderDetails" type="OrderDetailsType" />

</output>
</outputs>

The CartType is de�ned in the Cart.xsd �le:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:complexType name="CartItemType">
<xs:attribute name="prodId" type="xs:string" />
<xs:attribute name="quantity" type="xs:int" />

</xs:complexType>

<xs:complexType name="CartType">
<xs:sequence>
<xs:element name="item" type="CartItemType"
maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

<xs:element name="cart" type="CartType"></xs:element>

</xs:schema>

The OrderDetailsType is de�ned in the OrderDetails.xsd �le:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="PaymentType">
<xs:restriction base="xs:string">

18

<xs:enumeration value="Cash" />
<xs:enumeration value="Visa" />
<xs:enumeration value="PayPal" />

</xs:restriction>
</xs:simpleType>

<xs:complexType name="OrderDetailsType">
<xs:sequence>
<xs:element name="paymentWith" type="PaymentType" />

</xs:sequence>
</xs:complexType>

<xs:element name="orderDetails" type="OrderDetailsType"></xs:element>
</xs:schema>

The speci�cation of the processing functions getCartPF and setCartPF which use the new CartType
and CartItemType types is shown below:

<function name="getCartPF" input="getCart"
output="getCartOut">
<precondition>true</precondition>
<e�ect>
CartType cartOut = new CartType();
for (String i: cart.keySet()) {
Integer q = cart.get(i);
CartItemType cartItem=new CartItemType();
cartItem.setProdId(i);
cartItem.setQuantity(q);
cartOut.getItem().add(cartItem);

}
getCartOut.cart = cartOut;

</e�ect>
</function>
<function name="setCartPF" input="setCart"
output="setCartOut">
<precondition>true</precondition>
<e�ect>
cart.clear();
for(CartItemType cartItem: setCart.get_cart().getItem()) {
cart.put(cartItem.getProdId(), cartItem.getQuantity());

}
</e�ect>

</function>

In the above in-line Java fragment the Java CartType and CartItemType types and their methods
are used. Note that these are generated by JAXB from the source XSD schema. The Java code for the
theses class is found in the xjcgen directory.

Part of the XML test case �le generated:

<?xml version="1.0" encoding="UTF−8"?>
<set k="2">
<de�nitions />
<sequences>

...
<sequence>

...
<call>
<function name="setCartPF" />
<input name="setCart">
<cart type="CartType">

19

<item quantity="2" prodId="d34" />
<item quantity="4" prodId="370" />
<item quantity="3" prodId="f82" />
<item quantity="3" prodId="91b" />
<item quantity="6" prodId="032" />
<item quantity="8" prodId="84f" />

</cart>
</input>
<output name="setCart_Error" />

</call>
...

</sequence>
...
</sequences>

</set>

References

[1] Mike Holcombe and Florentin Ipate. Correct Systems: Building Business Process Solutions.

[2] Florentin Ipate and Mike Holcombe. An integration testing method that is proved to �nd all faults.
International Journal of Computer Mathematics, 63:159�178, 1997.

[3] Florentin Ipate and Mike Holcombe. Testing data processing-oriented systems from stream x-machine
models. Theor. Comput. Sci., 403(2-3):176�191, 2008.

20

A Appendix

A.1 The complete book speci�cation:

<SXM name="Book">
<states>
<state name="available" />
<state name="borrowed" />

</states>
<initialState state="available" />

<transitions>
<transition from="available" function="setBorrowedPF" to="borrowed" />
<transition from="borrowed" function="releasePF" to="available" />
<transition from="available" function="bookIsAvailablePF" to="available" />
<transition from="borrowed" function="bookIsNotAvailablePF" to="borrowed" />

</transitions>

<memory>
<declaration>
</declaration>
<initial>
</initial>
<display>
</display>

</memory>
<inputs>
<input name="setBorrowed" />
<input name="release" />
<input name="isAvailable" />

</inputs>
<outputs>
<output name="setBorrowedOut" />
<output name="releaseOut" />
<output name="isAvailableOut"><result name="result" type="xs:boolean" /></output>

</outputs>

<functions>
<function name="setBorrowedPF" input="setBorrowed" output="setBorrowedOut"/>
<function name="releasePF" input="release" output="releaseOut"/>

<function name="bookIsAvailablePF" input="isAvailable" output="isAvailableOut">
<e�ect>
isAvailableOut.result = true;

</e�ect>
</function>

<function name="bookIsNotAvailablePF" input="isAvailable" output="isAvailableOut">
<e�ect>
isAvailableOut.result = false;

</e�ect>
</function>

</functions>

<testinputgeneration>
<inputgenerator function="setBorrowedPF" />
<inputgenerator function="releasePF" />
<inputgenerator function="bookIsAvailablePF" />
<inputgenerator function="bookIsNotAvailablePF" />

</testinputgeneration>
</SXM>

21

A.2 Animation example:

Sxm created:types.BookSXM@e09713

SXM Animator in interactive mode.

Enter .h. to see a list of commands.

Machine has been reset.

���������������������������������������

STATE : available

MEMORY :

���������������������������������������

Input :

You can see that a SXM of the type BookSXM is created and its current state is available. Enter .i.
to see the available inputs:

Input : .i.

=======================================

List of inputs:

isAvailable()

setBorrowed()

release()

=======================================

STATE : available

MEMORY :

���������������������������������������

Input :

Let's change the state to borrowed:

Input : setBorrowed

---types.BookSXM@e09713

---types.BookSXM@e09713 STATE : available

---types.BookSXM@e09713 MEMORY:

---types.BookSXM@e09713 INPUT : setBorrowed()

---types.BookSXM@e09713 OUTPUT : setBorrowedOut

Output : setBorrowedOut

���������������������������������������

STATE : borrowed

MEMORY :

���������������������������������������

Input :

The actual input is setBorrowed() but we can omit the parentheses. You can observe the new state
of the machine.

Trying the same input would bring an error without changing the state. This is the default output
when an input is not accepted at the current state:

Input : setBorrowed

---types.BookSXM@e09713

---types.BookSXM@e09713 STATE : borrowed

---types.BookSXM@e09713 MEMORY:

---types.BookSXM@e09713 INPUT : setBorrowed()

---types.BookSXM@e09713 ERROR : setBorrowed_Error

Output : setBorrowed_Error

���������������������������������������

STATE : borrowed

MEMORY :

���������������������������������������

Input :

22

Enter .q. to quit the animator:

Input : .q.

...\examples\Book_Borrower>

A.3 The complete Cart speci�cation:

<SXM name="Cart">
<states>
<state name="shopping" />
<state name="pending" /><!−−
<state name="completed" />

−−>
</states>

<initialState state="shopping" />

<transitions>
<transition from="shopping" function="addToCartPF"
to="shopping" />

<transition from="shopping" function="removeFromCartPF"
to="shopping" />

<transition from="shopping" function="getCartPF" to="shopping" />
<transition from="shopping" function="setCartPF" to="shopping" />
<transition from="shopping" function="checkOutPF" to="pending" /><!−−
<transition from="pending" function="checkStatusPF" to="pending" />
<transition from="pending" function="completePF" to="completed" />
<transition from="completed" function="checkStatusPF" to="completed" />

−−>
</transitions>

<memory>
<javaImports>
import java.util.*;
</javaImports>
<declaration>
<!−− cart stores the quantity for each product id −−>
HashMap<String, Integer> cart;

</declaration>
<initial>cart = new HashMap<String,Integer>();</initial>
<display></display>

</memory>

<inputs>
<input name="addToCart">
<arg name="prodId" type="xs:string" />
<arg name="quantity" type="xs:int" />

</input>
<input name="removeFromCart">
<arg name="prodId" type="xs:string" />

</input>
<input name="getCart" />
<input name="setCart" >
<arg name="cart" type="CartType" />

</input>
<input name="checkOut" >
<arg name="orderDetails" type="OrderDetailsType" />

</input>
</inputs>

<outputs>
<output name="addToCartOut" />
<output name="removeFromCartOut" />

23

<output name="getCartOut">
<result name="cart" type="CartType" />

</output>
<output name="setCartOut" />
<output name="checkOutOut" >
<result name="orderDetails" type="OrderDetailsType" />

</output>
</outputs>

<functions>

<function name="addToCartPF" input="addToCart"
output="addToCartOut">
<precondition>true</precondition>
<e�ect>
String id = addToCart.get_prodId();
int quantity = addToCart.get_quantity();
int oldQuantity = 0;
if (cart.containsKey(id))
oldQuantity = cart.get(id);

cart.put(id, oldQuantity+quantity);
</e�ect>

</function>

<function name="removeFromCartPF" input="removeFromCart"
output="removeFromCartOut">
<precondition>
cart.containsKey(removeFromCart.get_prodId())

</precondition>
<e�ect>
cart.remove(removeFromCart.get_prodId());

</e�ect>
</function>

<function name="getCartPF" input="getCart"
output="getCartOut">
<precondition>true</precondition>
<e�ect>
CartType cartOut = new CartType();
for (String i: cart.keySet()) {
Integer q = cart.get(i);
CartItemType cartItem=new CartItemType();
cartItem.setProdId(i);
cartItem.setQuantity(q);
cartOut.getItem().add(cartItem);

}
getCartOut.cart = cartOut;

</e�ect>
</function>
<function name="setCartPF" input="setCart"
output="setCartOut">
<precondition>true</precondition>
<e�ect>
cart.clear();
for(CartItemType cartItem: setCart.get_cart().getItem()) {
cart.put(cartItem.getProdId(), cartItem.getQuantity());

}
</e�ect>

</function>
<function name="checkOutPF" input="checkOut"
output="checkOutOut">
<precondition>true</precondition>

24

<e�ect>
checkOutOut.orderDetails = checkOut.get_orderDetails();

</e�ect>
</function>

</functions>

<testinputgeneration>
<inputgenerator function="addToCartPF">
String id = UUID.randomUUID().toString().substring(0, 3);
Integer quantity = (new Random()).nextInt(10);
addToCart.set_prodId(id);
addToCart.set_quantity(quantity);

</inputgenerator>
<inputgenerator function="removeFromCartPF">
if (cart.size()> 0)
removeFromCart.set_prodId((String) cart.keySet().toArray()[(new Random()).nextInt(cart.size())]);

</inputgenerator>
<inputgenerator function="getCartPF">
</inputgenerator>
<inputgenerator function="setCartPF">
CartType cart = new CartType();
// put at least 5 items
int numItems = (new Random()).nextInt(3)+5;
for (int i=0; i < numItems;i++) {
String id = UUID.randomUUID().toString().substring(0, 3);
Integer quantity = (new Random()).nextInt(10);
CartItemType cartItem=new CartItemType();
cartItem.setProdId(id);
cartItem.setQuantity(quantity);
cart.getItem().add(cartItem);

}
setCart.set_cart(cart);

</inputgenerator>
<inputgenerator function="checkOutPF">
OrderDetailsType od = new OrderDetailsType();
od.setPaymentWith(PaymentType.fromValue("Visa"));
checkOut.set_orderDetails(od);

</inputgenerator>
</testinputgeneration>

</SXM>

B Developer's reference guide

Two Java �les are created for each speci�cation: the nameSXM_base and the nameSXM versions.
The nameSXM Java class extends the nameSXM_base and it is the class representing the �nal Java

program for JSXM.

B.1 nameSXM

This �le contains the in-line Java code from the speci�cation. Apart from the in-line code there is minimal
Java code for the operation of the machine. This enables easier error identi�cation in the speci�cation
since if there is an error in the Java in-line code of the speci�cation, the Java parser will report the line
numbers corresponding to this �le.

B.2 nameSXM_base

This �le is where everything is de�ned for the operation of the machine. It extends the abstract SXM
Java class.

25

	Introduction to JSXM
	What is JSXM?
	Model Animation
	Test Generation
	Test Transformation

	First steps
	Installing JSXM
	Checking the installation
	Executing the examples
	Filename conventions

	Compiling the specification
	Notes about the compilation

	Animating the SXM specification
	Executing the animator in batch mode
	Executing the animator in interactive mode
	Using the animator in interactive mode

	Generating Test Cases
	Generated test cases

	Transforming Test Cases to JUnit
	Requirements for Java files under test
	Example of a generated JUnit file

	Executing the JUnit tests

	JSXM specification
	JSXM types: XSD
	User-defined types

	Function definitions
	Test Input generators
	The test generation process

	Specifications for interacting SXMs
	Preconditions should have no side-effects
	SXM instances definitions

	Defining new JSXM types with XSD
	Appendix
	The complete book specification:
	Animation example:
	The complete Cart specification:

	Developer’s reference guide
	nameSXM
	nameSXM_base

